Skip to main content

Advertisement

Log in

Segmental quantitative myocardial perfusion with PET for the detection of significant coronary artery disease in patients with stable angina

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The goal of this study is to determine the technical accuracy of segmental perfusion parameters assessed with quantitative cardiac PET imaging in the evaluation of coronary artery disease (CAD) in patients with stable angina.

Methods

A cohort of patients who participated in the EVINCI protocol underwent an evaluation of coronary anatomy by invasive coronary angiography (ICA) and/or coronary computed tomography angiography (CCTA) and PET myocardial perfusion imaging with H2 15O, 13NH3 or 82Rb. PET studies were analyzed by two independent observers blinded to clinical and instrumental data, and classified as positive or negative for significant CAD using only segmental perfusion measurements and cut-off values from literature.

Results

On a per-patient basis, the overall inter-observer agreement on PET results was 90 % (kappa = 0.79), indicating substantial agreement. On a per-vessel basis, the inter-observer agreement on PET results was 88 % (kappa = 0.74) in the RCA territory, 94 % (kappa = 0.84) in the LAD territory and 94 % (kappa = 0.85) in the LCX territory.

Segmental PET measurements correctly identified 85 % of the patients, resulting in a global sensitivity of 86 %, a specificity of 84 %, a positive predictive value (PPV) of 69 % and a negative predictive value (NPV) of 93 %.

In vessel-based analyses, quantitative perfusion parameters had a sensitivity, specificity, PPV and NPV of 92 %, 82 %, 42 % and 99 %, respectively, for the detection of significant coronary stenoses in all major coronary arteries.

Conclusions

The assessment of absolute myocardial perfusion parameters measured at a segment level lead to reliable and accurate identification of patients with significant coronary stenosis at ICA and/or CCTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. deKemp RA, Ruddy TD, Hewitt T, Dalipaj MM, Beanlands R. Detection of serial changes in absolute myocardial perfusion with Rb-82 PET. J Nucl Med. 2000;41:1426–35.

    CAS  PubMed  Google Scholar 

  2. Kuhle WG, Porenta G, Huang SC, Buxton D, Gambhir SS, Hansen H, et al. Quantification of regional myocardial blood-flow using N-13 ammonia and reoriented dynamic positron emission tomographic imaging. Circulation. 1992;86:1004–17.

    Article  CAS  PubMed  Google Scholar 

  3. DiCarli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang SC, et al. Relation among stenosis severity, myocardial blood-flow, and flow reserve in patients with coronary-artery disease. Circulation. 1995;91:1944–51.

    Article  CAS  Google Scholar 

  4. Ahn JY, Lee DS, Lee JS, Kim SK, Cheon GJ, Yeo JS, et al. Quantification of regional myocardial blood flow using dynamic H2(15)O PET and factor analysis. J Nucl Med. 2001;42:782–7.

    CAS  PubMed  Google Scholar 

  5. Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med. 2012;53:1230–4.

    Article  CAS  PubMed  Google Scholar 

  6. Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging. 2010;3:623–40.

    Article  PubMed  Google Scholar 

  7. Schindler TH, Quercioli A, Valenta I, Ambrosio G, Wahl RL, Dilsizian V. Quantitative assessment of myocardial blood flow—clinical and research applications. Semin Nucl Med. 2014;44:274–93.

    Article  PubMed  Google Scholar 

  8. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography: added value of coronary flow reserve. J Am Coll Cardiol. 2009;54:150–6.

    Article  PubMed  Google Scholar 

  9. Dorbala S, Di Carli MF. Cardiac PET perfusion: prognosis, risk stratification, and clinical management. Semin Nucl Med. 2014;44:344–57.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation. 2002;105:186–93.

    Article  PubMed  Google Scholar 

  11. Saraste A, Kajander S, Han C, Nesterov SV, Knuuti J. PET: is myocardial flow quantification a clinical reality? J Nucl Cardiol. 2012;19:1044–59.

    Article  PubMed  Google Scholar 

  12. Nesterov SV, Deshayes E, Sciagrà R, Settimo L, Declerck JM, Pan X-B, et al. Quantification of myocardial blood flow in absolute terms using 82Rb PET imaging - results of RUBY-10 study. JACC Cardiovasc Imaging. 2014;7:1119–27.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yoshinaga K, Katoh C, Manabe O, Klein R, Naya M, Sakakibara M, et al. Incremental diagnostic value of regional myocardial blood flow quantification over relative perfusion imaging with generator-produced rubidium-82 PET. Circ J. 2011;75:2628–34.

    Article  PubMed  Google Scholar 

  14. Kajander SA, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, et al. Clinical value of absolute quantification of myocardial perfusion with 15O-water in coronary artery disease. Circ Cardiovasc Imaging. 2011;4:678–84.

    Article  PubMed  Google Scholar 

  15. Liga R, Marini C, Coceani M, Filidei E, Schlueter M, Bianchi M, et al. Structural abnormalities of the coronary arterial wall--in addition to luminal narrowing--affect myocardial blood flow reserve. J Nucl Med. 2011;52:1704–12.

    Article  PubMed  Google Scholar 

  16. Parkash R, deKemp RA, Ruddy TD, Kitsikis A, Beauschene L, Williams K, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol. 2004;11:440–9.

    Article  CAS  PubMed  Google Scholar 

  17. Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H. Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. JACC Cardiovasc Imaging. 2009;2:751–8.

    Article  PubMed  Google Scholar 

  18. Kaufmann PA, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG. Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 15O-labeled water and PET. J Nucl Med. 1999;40:1848–56.

    CAS  PubMed  Google Scholar 

  19. El Fakhri G, Kardan A, Sitek A, Dorbala S, Abi-Hatem N, Lahoud Y, et al. Reproducibility and accuracy of quantitative myocardial blood flow assessment with 82Rb PET: comparison with 13N-ammonia PET. J Nucl Med. 2009;50:1062–71.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schindler TH, Zhang X-L, Prior JO, Cadenas J, Dahlbom M, Sayre J, et al. Assessment of intra- and interobserver reproducibility of rest and cold pressor test-stimulated myocardial blood flow with 13N-ammonia and PET. Eur J Nucl Med Mol Imaging. 2007;34:1178–88.

    Article  PubMed  Google Scholar 

  21. Harms HJ, Nesterov SV, Han C, Danad I, Leonora R, Raijmakers PG, et al. Comparison of clinical non-commercial tools for automated quantification of myocardial blood flow using oxygen-15-labelled water PET/CT. Eur Heart J Cardiovasc Imaging. 2014;15:431–41.

    Article  PubMed  Google Scholar 

  22. Slomka PJ, Alexanderson E, Jacome R, Jimenez M, Romero E, Meave A, et al. Comparison of clinical tools for measurements of regional stress and rest myocardial blood flow assessed with 13N-ammonia PET/CT. J Nucl Med. 2012;53:171–81.

    Article  CAS  PubMed  Google Scholar 

  23. Nitzsche EU, Choi Y, Czernin J, Hoh CK, Huang SC, Schelbert HR. Noninvasive quantification of myocardial blood flow in humans. A direct comparison of the [13N]ammonia and the [15O]water techniques. Circulation. 1996;93:2000–6.

    Article  CAS  PubMed  Google Scholar 

  24. Prior JO, Allenbach G, Valenta I, Kosinski M, Burger C, Verdun FR, et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water. Eur J Nucl Med Mol Imaging. 2012;39:1037–47.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kajander S, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010;122:603–13.

    Article  CAS  PubMed  Google Scholar 

  26. Danad I, Uusitalo V, Kero T, Saraste A, Raijmakers PG, Lammertsma AA, et al. Quantitative assessment ofmyocardial perfusion in the detection of significant coronary artery disease. J Am Coll Cardiol. 2014;64:1464–75.

    Article  PubMed  Google Scholar 

  27. Neglia D, Rovai D, Caselli C, Pietilä M, Teresinska A, Aguadé-Bruix S, et al. Detection of significant coronary artery disease by noninvasive anatomical and functional imaging. Circ Cardiovasc Imaging. 2015. doi:10.1161/CIRCIMAGING.114.002179.

    PubMed  Google Scholar 

  28. Hesse B, Tagil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging. 2005;32:855–97.

    Article  CAS  PubMed  Google Scholar 

  29. Hermansen F, Rosen SD, Fath-Ordoubadi F, Kooner JS, Clark JC, Camici PG, et al. Measurement of myocardial blood flow with oxygen-15 labelled water: comparison of different administration protocols. Eur J Nucl Med Mol Imaging. 1998;25:751–9.

    Article  CAS  Google Scholar 

  30. DeGrado T, Hanson M, Turkington T, DeLong D, Brezinski D, Vallee J, et al. Estimation of myocardial blood flow for longitudinal studies with 13N-labeled ammonia and positron emission tomography1. J Nucl Cardiol. 1996;3:494–507.

    Article  CAS  PubMed  Google Scholar 

  31. Lortie M, Beanlands RSB, Yoshinaga K, Klein R, DaSilva JN, deKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging. 2007;34:1765–74.

    Article  PubMed  Google Scholar 

  32. Cerqueira MD. Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart: A Statement for Healthcare Professionals From the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.

    Article  PubMed  Google Scholar 

  33. Anagnostopoulos C, Almonacid A, El Fakhri G, Curillova Z, Sitek A, Roughton M, et al. Quantitative relationship between coronary vasodilator reserve assessed by 82Rb PET imaging and coronary artery stenosis severity. Eur J Nucl Med Mol Imaging. 2008;35:1593–601.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Johnson NP, Gould KL. Physiological basis for Angina and ST-segment change. JACC Cardiovasc Imaging. 2011;4:990–8.

    Article  PubMed  Google Scholar 

  35. Bluemke DA, Achenbach S, Budoff M, Gerber TC, Gersh B, Hillis LD, et al. Noninvasive coronary artery Imaging - Magnetic resonance angiography and multidetector computed tomography angiography - A scientific statement from the American Heart Association Committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation. 2008;118:586–606.

    Article  PubMed  Google Scholar 

  36. Chow BJW, Abraham A, Wells GA, Chen L, Ruddy TD, Yam Y, et al. Diagnostic accuracy and impact of computed tomographic coronary angiography on utilization of invasive coronary angiography. Circ Cardiovasc Imaging. 2009;2:16–23.

    Article  PubMed  Google Scholar 

  37. Sciagrà R. Quantitative cardiac positron emission tomography: the time is coming! Scientifica. 2012;2012:1–16.

    Article  Google Scholar 

  38. Danad I, Raijmakers PG, Appelman YE, Harms HJ, de Haan S, van den Oever MLP, et al. Hybrid imaging using quantitative H215O PET and CT-based coronary angiography for the detection of coronary artery disease. J Nucl Med. 2012;54:55–63.

    Article  PubMed  Google Scholar 

  39. Neglia D, L'Abbate A. Myocardial perfusion reserve in ischemic heart disease. J Nucl Med. 2009;50:175–7.

    Article  PubMed  Google Scholar 

  40. Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R, et al. Anatomic versus physiologic assessment of coronary artery disease. J Am Coll Cardiol. 2013;62:1639–53.

    Article  PubMed  Google Scholar 

  41. Johnson NP, Kirkeeide RL, Gould KL. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? JACC Cardiovasc Imaging. 2012;5:193–202.

    Article  PubMed  Google Scholar 

  42. Reddy KG, Nair RN, Sheehan HM, Hodgson JM. Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis. J Am Coll Cardiol. 1994;23:833–43.

    Article  CAS  PubMed  Google Scholar 

  43. Czernin J, Muller P, Chan S, Brunken RC, Porenta G, Krivokapich J, et al. Influence of age and hemodynamics on myocardial blood-flow and flow reserve. Circulation. 1993;88:62–9.

    Article  CAS  PubMed  Google Scholar 

  44. Javadi MS, Lautamäki R, Merrill J, Voicu C, Epley W, McBride G, et al. Definition of vascular territories on myocardial perfusion images by integration with true coronary anatomy: a hybrid PET/CT analysis. J Nucl Med. 2010;51:198–203.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Berti.

Ethics declarations

Information on grants and other forms of financial support

This work was supported by a grant from the European Union FP7- CP-FP506 2007 (grant agreement no. 222915, EVINCI [Evaluation of Integrated Cardiac Imaging for the Detection and Characterization of Ischemic Heart Disease]). It was also supported in part by the Centre of Excellence in Molecular Imaging in Cardiovascular and Metabolic Research, the Academy of Finland, the Cardiovascular Biomedical Research Unit of the Royal Brompton & Harefield National Health Service Foundation Trust, the National Institute for Health Research Cardiovascular Biomedical Research Unit at St Bartholomew’s Hospital, the Ministry of Science and Higher Education, Poland and unrestricted grants and products from General Electric Healthcare. This work forms part of the research themes contributing to the translational research portfolio of the NIHR Cardiovascular Biomedical Research Unit at Barts, which is supported and funded by the National Institute for Health Research.

All authors had no relationship with industry and financial associations from within the past 2 years that might pose a conflict of interest in connection with the submitted article.

All procedures have been approved by the appropriate institutional and/or national research ethics committee and have been performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berti, V., Sciagrà, R., Neglia, D. et al. Segmental quantitative myocardial perfusion with PET for the detection of significant coronary artery disease in patients with stable angina. Eur J Nucl Med Mol Imaging 43, 1522–1529 (2016). https://doi.org/10.1007/s00259-016-3362-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-016-3362-0

Keywords

Navigation